Indian Statistical Institute M. Math. II Year Semestral Examination 2008-2009 Fourier Analysis

Date:08-12-2008

Duration: 3 Hours

Answer all the questions. Maximum mark you can get is 50. Please do check that at least 62 marks are allotted.

Note: Let $\lambda > 0$, p real. Find a relation between $\int dt \ f(\lambda t + p)e^{-ity}$ and $\frac{1}{\lambda}e^{\frac{iqp}{\lambda}} \int dq \ f(q) \ e^{-iq\frac{b}{\lambda}}$ and you can use it freely.

1. Let \mathcal{H} be a Hilbert space with $\mathcal{H}=$ closed linear span $\{x_1,x_2,\ldots\}$. Assume that there are constants $C_1,C_2>0$ such that

$$C_1 \sum_k |a_k|^2 \le ||\sum a_k x_k||^2 \le C_2 \sum |a_k|^2$$

for all complex sequences a_1, a_2, \ldots Show that there exist $K_1, K_2 > 0$ depending only on C_1, C_2 such that

$$|K_1||y||^2 \le \sum |\langle y, x_n \rangle|^2 \le K_2||y||^2$$

for all y in \mathcal{H} .

[3]

2. Let $\varphi \in L^2(R)$ such that $\{\varphi(t-k) : k \in Z\}$ is a Riesz basis for $V_0 =$ closed lin span $\{\varphi(t-k) : k \in Z\}$. For each $\lambda > 0$ put

$$L_{\lambda} = \text{closed linear span } \{\sqrt{\lambda}\varphi(\lambda t - k) : k \in Z\}.$$

Let $\rho_{\lambda}: L^{2}(R) \to L_{\lambda}$ be the orthogonal projection. If $g \in L^{2}(R)$ and g has bounded support show that $\rho_{\lambda}g \to 0$ as $\lambda \to 0$.

3. Let $\psi \in L^2(\mathbb{R}^n)$. Define for a > 0, b in \mathbb{R}^n

$$\psi_{a,b}(x) = \frac{1}{a^{\frac{n}{2}}} \psi\left(\frac{x-b}{a}\right).$$

Define $(W_{\psi}f)(a,b)$ for f in $L^2(\mathbb{R}^n)$ by

$$(W_{\psi}f)(a, \underline{b}) = \langle f, \psi_{a,\underline{b}} \rangle.$$

If $f \in L^1 \cap L^2$, find an expression for

$$(2\pi)^{-n/2} \int_{\mathbb{R}^n} db \ e^{-itb}(W_{\psi}f) \ (a,b)$$

in terms of \hat{f} , $\hat{\psi}$ and a and prove your claim.

4. (a) If $\psi \in L^1 \cap L^2(R)$ and

$$\int du \frac{|\hat{\psi}(u)|^2}{|u|} < \infty \text{ show that } \int \psi(t) \ dt = 0.$$

[2]

[4]

- (b) For real a, define $f_a(t)=(1-at^2)e^{-(\frac{t^2}{2})}$. Show that there is at most one a such that $\int du \frac{|\hat{f}_a(u)|^2}{|u|} < \infty$. [1]
- (c) Let f_a be as in (b). Show that there exists real a such that

$$\int du \, \frac{|\hat{f}_a(u)|^2}{|u|} < \infty.$$

[3]

5. Let $B_0, B_1, B_2, ...$ be the functions given by $B_0 = \chi_{[0,1]}$,

$$B_1 = B_0 * B_0$$
, $B_j = B_{j-1} * B_0$ for $j \ge 2$.

Fix p in $\{0,1,2,3,...\}$ [say p=10,000]. Let $V_j=$ closed lin sp $\{2^{j/2}B_p(2^jt-k):k\in Z\}$ for j in Z. Show that $\{V_j:j\in Z\}$ is MRA for $L^2(R)$.

6. Let $\psi \in L^2(R)$ be such that

$$\psi(y) = \frac{1}{\sqrt{2\pi}} \chi\{\pi \le |y| \le 2\pi\} e^{iy/2}.$$

Show that $\{2^{p/2}\psi(2^pt - k) : p, k \in Z\}$ is

(a) orthonormal family in
$$L^2(R)$$
. [2]

(b) basis for
$$L^2(R)$$
. [3]

* 7. Let $f: R \to \mathbb{C}$ be any periodic function of period 2π such that $\int_{0}^{2\pi} |f(x)|^2 dx < \infty. \text{ Let } \Lambda(h) = \int_{0}^{2\pi} |f(x+h) - f(x)|^2. \text{ If } \Lambda(h) \leq C h^{\alpha}$ for some $\alpha > 1$, show that

$$\sum |\hat{f}(k)| < \infty.$$

8. Let $f: R \to \mathbb{C}$ be a bounded L' function with $\int f(x) dx = 0$ and there exist constants $k, \epsilon > 0$ such that $|f(x)| \le \frac{k}{(1+|x|)^{1+\epsilon}}$. Show that there exists constants $\lambda_j \ge 0$, atoms a_j such that

$$f = \sum_{1} \lambda_j \ a_j$$

with $\sum \lambda_j$ bounded by a constant depending on k and ϵ . [6]

- 9. (Prove the sampling theorem) Let $f \in L^2(R)$ such that supp $\hat{f} \subset [-\pi, \pi]$. Then (a) f is a continuous function
 - (b) $f(t) = \sum_{k \in \mathbb{Z}} f(k) \frac{\sin[\pi(t-k)]}{\pi(t-k)}$. [3]
 - (c) RHS converges uniformly on compact sets to LHS. [2]
- 10. (a) Fix $t_0 \in R$. Define $f(x) = e^{it_0x}$. Find the Fourier transform of the tempered distribution f.
 - (b) Fix $t_1 \in R$. Let $\delta_{t_1} : S(R) \to \mathbb{C}$ be the linear map given by $\delta_{t_1}(g) = g(t_1)$. Find the Fourier transform of the terpered distribution δ_{t_1} .
 - (c) State Dinis theorem and Jordans theorem for convergence of fourier series of a function f
 - (d) State Paley-Wiener theorem for $f \in L^2(R)$ and f = 0 on $[0, \infty)$ and the converse.
 - (e) State Paley-Wiener theorem for $f \in L^2(R)$ and f(x) = 0 for $|x| \ge A$ for some A and the converse.
 - (f) State Poisson summation formula for f in S(R). [1]

11. Let $\varphi \in L^{\infty}(\mathbb{R}^n)$, $K \in L^{1}(\mathbb{R}^n)$, $\hat{K}(t) \neq 0 \ \forall \ t \in \mathbb{R}^n$, and $\lim_{|x| \to \infty} (K * \mathbb{R}^n)$

$$\phi(x) = a_0 \hat{K}(0)$$
, then prove that

(a)
$$\lim_{|x| \to \infty} (f * \phi)(x) = a_0 \hat{f}(0) \ \forall \ f \in L^1(\mathbb{R}^n).$$
 [3]

(b) Further, if φ is a slowly oscillating, then conclude,

$$\lim_{|x|\to\infty} \phi(x) = a_0. \{\text{where } a_0 \text{ as in (a)}\}.$$